

 An integral method to make software work

 E. Mulder

 ErgoS Engineering & Ergonomics, Pb 267, 7500 AG Enschede, The Netherlands

Abstract

A method is proposed to systematically diagnose and improve software in use. The method has an integral

evaluation, dealing with the software and the way it is used in its full context. The method leads to integral
improvements, not just dealing with software changes, but also with changes in for example work organisation, user
instruction or hardware. The characteristics of the method are compared to more common usability evaluations like
expert walkthroughs and user tests. Two applications of the method are described: a quick screening and a detailed
evaluation. In both cases usability problems are detected in several levels of design, such as functional design (e.g.
task flow) and dialogue design (e.g. rearranging and omitting data fields).

Keywords: usability evaluation, human computer interaction, method, software design, ULD/CTD/RSI.

1. Overview

A method is proposed to systematically diagnose
and improve software in use. The method in this paper
is addressed as 'the integral method' to emphasise:
▪ integral evaluation: dealing with the software and the

way it is used in its full context;
▪ integral improvements: not just dealing with software

changes, but also with changes in for example work
organisation.

1.1 History

The integral method has evolved from the way

ErgoS contributes to software design projects; where
typically the emphasis is on how users fulfil tasks.
There is a tradition to consult users at the place of
work, carrying out their task.

From the year 2000 on there is an increasing
demand to have software evaluated and improved.
Sometimes line managers call us: "Will you come over
and see? I think we're losing production due to bad

software." Other times the initiative comes from
‘Human Resources’ or ‘Health & Safety’: "I wonder
whether this software contributes to ULD?" (Upper
Limb Disorders, or also referred to as 'RSI' or 'CTD'.)

During the years a method was developed to
diagnose and improve software. Beginning 2005 the
method was published in [1]; which offers a concise set
of software guidelines as well.

1.2 How to make software work better

Working software

Software that works well, facilitates productivity
without health risks for the users. The relation between
software, productivity and health is described in the
Appendix.

To summarise: evaluation and improvement is
needed at all design levels of software, among which:
▪ task allocation and task flow;
▪ information design;
▪ dialogue design;
▪ amount and kind of control actions needed.

Integral evaluation
The word 'integral' in the title refers to integral

evaluation. The core evaluation is done by a usability
expert consulting a user during work. Software is
diagnosed together with the way of use in its full
context. This differs from most software usability
evaluations [2, 3], which separates one or more of:
expert, user, task and context.

Integral improvement

The word 'integral' also refers to the integral
improvements, not limited to the software itself. In
many projects we find that changing the software itself
is beyond the budget or beyond the time schedule or
simply impossible.

Nevertheless there may be more cost-effective
solutions ‘outside’ the software than inside it. These
types of improvement may be found in:
▪ user instruction on break schedules, efficient actions

sequences, keyboard short-cuts, etc.;
▪ other sources, destinations or formats of data.
▪ organisation of work: alternative work flows, task

enrichment, job rotation, user authorisations, etc.;
▪ providing different hardware such as displays and

input devices.
Changes to software itself also have several levels,

including but not limited to (expensive) redesign:
▪ designing new software;
▪ selecting alternative software;
▪ adjusting software in future releases;
▪ configuration by system administration;
▪ configuration by user.

1.3 Future developments

The integral method will lead to derived methods,

dedicated to certain business domains or types of
software. At the moment of writing a method is being
developed by ErgoS for the Dutch health insurers;
more about this in § 6 Discussion.

ErgoS will do more research on the effectiveness
of the method and on the operational usability of
ergonomic software guidelines. Unfortunately these
guidelines, like a lot of standards, tend to be difficult to
use according to their own metrics.

2. The integral method

Step 1. Preparation

In step 1 the project is planned. Decisions are

taken about goal, means, time, budget, scope etc. The
integral method explicitly demands decisions about
which software and which jobs are covered by the
evaluation.

Ways to improve software or its use

An important decision in the preparation is about
which type of solutions will be dealt with in the project.
All the different types mentioned before in ‘integral
improvement’ in § 1.2 may be part of the project, but
mostly there are limitations.

Including or excluding certain types of
improvement has substantial implications on the
criteria used for evaluation and on what deficiencies
one should concentrate.

E.g. when software itself may not be changed it is
fine to detect awkward dialogue boxes, because there
may be ways to avoid them or to reduce their impact.
But it is inefficient in this case to focus on potential
changes of these dialogue boxes itself.

Step 2. Stakeholders and desk research

The goal of this step is to roughly investigate the

main issues like: task flows, complaints of users and
line managers, health risks and expected usability
issues.

Actions taken are:
▪ Consulting one or more stakeholders involved in

production with this software (line managers).
▪ Researching materials related to the software like

instructions, manuals, types of hardware, screen prints
and alike.

▪ Analysing screen prints to identify whether legibility
is an important issue in the project. The integral
method possesses an easy technique to gather and
analyse screen prints and characters on the level of
pixels.

Step 3. Consulting users

This step of user participation may be considered

as the core of integral evaluation in the method. The
user is not asked to directly pinpoint problems in the
software, but he is rather an efficient source for leading

the evaluator through the tasks and through the
software.

A good and simple question to start off with would
be: “Please show me what your most common activity
is with this software”. This simple question will be the
start of getting insight into:
▪ the start, flow and end of tasks,
▪ task frequencies, duration and criticality,
▪ which information items on the screen are important

and frequently read,
▪ which screens, windows, dialogues, controls give rise

to workload (cognitive or physical) and are awkward
to use.

Note: besides focussing on the most common user
activity it is important to ask for rare but critical
activities.

This integral evaluation is described in more detail

in § 3, where it is compared to more known usability
methods. It is subject to discussion in § 6.

Step 4. Sorting out results and checking with users

Structuring the gathered results

Researching the materials in step 2 and consulting
the users in step 3 gives a lot of information which at
first has little structure. A first division in the findings
can be made by distinguishing the items related to the
‘look & feel’ from the items related to task flow.

The ‘look & feel’ items may be well structured by
connecting each item to a type of information or type
of control. The task flow items may be structured along
the task flow.

Having a meeting with users and stakeholders

It is important to get feedback on the structured
results from the users and consulted stakeholders.
Presenting the (anonymous) results got so far, to the
users and stakeholders in a meeting widens the
coverage and makes the results more reliable:
▪ Users will react on it — often enthusiastically — and

thereby give a clear indication whether a resulting
item was an accidental problem for a particular user
or a structural usability problem.

▪ Hearing each other, users often come up with more
details or examples of usability items.

▪ Users will help prioritising the items.

Step 5. Getting prioritised items to improve

Assigning priority
The priority of each item is determined by two

independent factors:
▪ quantity (task frequency, duration, criticality) of

occurrence of the usability problem;
▪ quality in negative terms (severity, inconvenience) of

the usability problem.

Economic solutions
Besides priority there is another deciding factor

whether or not to go for certain improvements: the
amount of costs and time needed to implement a
solution. E.g.: There may be items with low priority but
which are easy to implement. For example distributing
a ‘Post-it’ note with the ten most used keyboard short-
cuts.

Example of choosing in costs and time limits

Suppose a high priority has been given to the fact
that users have to duplicate information by hand from
one application to the other (which occurs more often
than not).
▪ A good solution would be integrating the

functionality of one application into the other, which
probably is very expensive and not to be expected in
the next few years.

▪ A second best solution would be adding an automated
data connection; which still may require quite an
investment.

▪ A cost-effective ‘temporal’ solution may be providing
keyboard macros or easy buttons on the screen for
copying the most wanted information items to the
clipboard, which will free the user from laboriously
mousing to select and copy these items.

3. Differences with other methods testing usability

3.1 Typical for this integral method

The integral method differs from other evaluation

methods in some aspects:
▪ The integral method has a solid base in the users'

expertise executing tasks supported by the software.
▪ The integral method uses the surplus value which

rises from the efficient combination of usability
expert and user. The expert lacks task knowledge and
has difficulties imagining a users mind. The user lacks
discrimination of ineffective interaction and has blind

spots due to being used to the way of working. Both
deficiencies will be compensated for in one go.

▪ The integral method is directed to several types of
improvements, not limited to adjusting software.

▪ The integral method is less effective for designing
new software from scratch. There must be access to
users performing the proposed tasks.

User + Task + Expert = Integral method

Seen form the perspective of Jakob Nielsen the
integral method seems the ultimate evaluation. Nielsen
[2] advises to apply alternately the expert review
(heuristic) and the user tests in iterative design phases
in order to increase the chance to identify usability
issues. Bias in [3] proposes a pluralistic usability
walkthrough, combining experts and users as well, but
this is a group meeting, not dealing with ‘real life’ task
execution.

Production tasks versus public software

To judge about the differences between the
integral method and more common methods, one
should be aware of the different goals of each.

Notice that the integral method aims to identify the
biggest problems in order to make a limited number of
leaps towards a more efficient and healthier use of
software. The method works best with software in use,
for bounded production tasks.

This differs from Nielsen, who aims to identify as
many usability problems as possible in order to
produce usable new software, often for a large public
like web sites.

3.2 Compared to expert walkthroughs

Expert walkthrough (e.g. cognitive walkthrough

and heuristic evaluation [2]) is often carried without a
working knowledge of tasks.
▪ This may gives rise to unnecessary work because

parts of the interface are evaluated which may hardly
be used in practice.

▪ A frequently occurring mismatch cannot be well
evaluated: Is the interaction adequate for the task or
does it offer much more (information and controls)
than is needed by 95% of the tasks? This mismatch
occurs frequently due to the fact that software
developers get simple demands like: “design screens
which support all these tasks”. No one tells them that
just 5 of the 20 database fields are involved in 95% of
the tasks. In other words when no dedicated screens
are designed for the 95% of simple tasks, users are

loaded with a far too crowded interface most of the
time.

▪ The expert will miss out on practical task execution,
which often differs from what was once specified in
the requirements.

3.3 Compared to user tests

Tests carried out by users basically fill the gap

caused by the fact that designers are not equal to users
and do not perform real life tasks with the software.
Therefore user tests are essential in designing software.
But this is not enough. Users often do not complain
about inefficiencies as long as they understand the
system and know how to carry on executing their task.

Example

Fig. 1: Dropdown list and radio buttons.

When users have to use the dropdown list in Fig. 1

they know perfectly well what to do: (1) click on the
little down arrow, (2) find the value, (3) move the
mouse to this value down in the list and (4) click again.

Actually the user may click anywhere in the list
control to get it unfolded, but as this does not work
with all lists most users tend to just clicking on the “far
too small for frequent clicking” down-arrow. For
frequent use the dropdown list is too laborious.

The radio buttons on the right of Fig. 1 only
require one click and that may be anywhere in the
imaginary rectangle surrounding button and text label,
offering an easier goal for pointing with the mouse.

A user might easily fail to detect that the dropdown
list is not efficient and comfortable for very frequent
use. Though, an expert in combination with a user will
quickly find out whether the control is used frequently
and give an adequate priority to get it improved.

(Strangely enough, we quite often see these
dropdown lists with just two items: Yes and No; which
actually represents the functionality of one simple
checkbox.)

4. Application of the integral method

The method was applied to a diversity of
applications, like administrative applications, CAD
software and intranet portals; all in occupational
context with no public use. Applying this method to
architectural CAD software has led to a guideline for
selecting and configuring CAD software used in
building design.

Two examples are described below. The first is a
quick screening (about 3 hours per application), the
second a detailed evaluation of one application
including some redesign. (30 hours).

4. 1 Quick screening of six applications

Rationale

Users complain about small characters, lots of
‘mousing’ and small screens. The applications are used
by about 200 workers and mostly database oriented.
Part of the workers deal with clients on the phone.

The goal of the project is to answer these questions:
▪ Are the applications effective?
▪ Is there a health risk in using these applications and

hardware?
▪ What type of solutions are there for the user

complaints and the problems found in the screening?

Actions and time needed
▪ step 1 Preparation

3 hrs: contact by telephone, writing quotation and
plan.

▪ step 2 Stakeholders and desk research
4 hrs: surveying manuals and reviewing screen prints,
identifying issues

▪ step 3 Consulting users
4 hrs: six interviews of ½ hr. per application, each
time with one or two users.

▪ step 4
4 hrs: sorting out results and preparing presentation
2 hrs: presenting and discussing results so far

▪ step 5 Getting prioritised items
2 hrs: adjusting results to get final evaluation report.

Some of the findings & advice
▪ For a certain critical reporting task every two weeks:

cleanup Excel from unused toolbars, borders, etc. to
free up space for actual data. Together with a bigger
screen, this takes away the need to reduce the zoom
factor from 100% to 70%, causing the user to peer at

the screen.
▪ Reduce network reaction times for most tasks by

reading data from decentralised (mirror) servers. The
few tasks needing to write and update data still use
the central server. This improvement aimed to reduce
the stress caused by waiting; especially while users
had clients on the phone.

▪ Rearrange data tables to avoid frequent switching to
another window to copy one value from it.

▪ Assemble a task dedicated screen to avoid skipping
10 fields not needed for an ordinary financial booking
(40/hour)

▪ Implement a running total while booking. In the old
situation one could only check the correctness of
bookings after completing the whole day, hoping no
error was made.

▪ Invest in new screens, slightly bigger and much better
focussed.

4.2 Detailed evaluation of one database application

Rationale

A Human Resource Manager expects health risks
and workload may be reduced while keeping up or
increasing productivity. The application is used by
about 100 people with rather monotonous database
tasks and dealing with paper forms.

Goal of the projects:
▪ Lowering mental and physical workload.

Actions and time needed
▪ step 1 Preparation

4 hrs: contact by email, writing quotation and plan.
▪ step 2 Stakeholders and desk research

6 hrs: visit stakeholders and department using the
application, reviewing screen prints, identifying
issues.

▪ step 3 Consulting users
4 hrs: interviews with three separate users.

▪ step 4
4 hrs: sorting out results and preparing presentation
3 hrs: presenting and discussing results so far

▪ step 5 Getting prioritised items
8 hrs: assemble final report, including examples of
redesigned screens and alternative task flows.

Some of the findings & advice
▪ Add dedicated screens for 99% of the tasks, because

about 80% of the database fields for these tasks stay
empty or hold standard values.

▪ Rearrange task flows and involved screens in order to
facilitate copying data from another application in
one go per paper form. In the original situation one
had to switch about 2..20 times between two
applications for handling one paper form. Users made
a solution to this awkward situation by jotting down
about 20 values on a bit of paper, which actually was
a forbidden practice because of quality regulations.

▪ Clean up the screens from lines, superfluous labels,
borders etc.

5. Conclusions

The method detects usability problems on all
design levels of the software, from global task design
down to cleaning up screens from graphic frill. The
method also leads towards solutions in different
domains like work organisation, adjusting software,
changing hardware and instructing users.

A more difficult question is: does the method
detect all the important usability problems? This cannot
be clearly concluded from the applications of the
method so far. A positive indication is the fact that
users, stakeholders and other usability experts in the
feedback meetings hardly ever add new issues to the
list of problems found when a detailed evaluation had
been done.

6. Discussion

Step 3 (§ 2) is a major component of the integral
method. This step efficiently integrates several ways of
usability testing in one go. At the same time this
pinpoints a weak spot in the method because the
evaluator also in one go has to carry out:
▪ task analysis,
▪ heuristic evaluation / cognitive walkthrough and
▪ user test;
all this with guidelines (like ISO 9241) in mind.

To help evaluators in this difficult task it is
possible for restricted domains to give them a more
restricted framework which is easier to handle. ErgoS
is developing this for the Dutch health insurers. This
framework helps the evaluator especially in step 3 by
supplying a shortlist of about 15 most important and
most occurring ergonomic failures in software. Each of
these usability items has realistic symptoms described
to recognise it and offers indication for improvements.

At the moment of writing it looks like this method

and the shortlist of items will facilitate the evaluation
and improvement of any administrative, database
oriented software. Of course the shortlist of 15 items
does not cover all the guidelines.

Appendix: Software, health and productivity

Software influences health (ULD/CTD). Physically
this looks quite straight forward. Presumably health
risks increase and productivity decreases with:
▪ more mouse and keyboard actions;
▪ smaller mouse click areas (demands longer and more

precise muscle control);
▪ unfavourable mouse actions like dragging (pressing a

button while moving increases muscle contraction);
▪ smaller, less legible, characters (tense posture due to

peering at the screen).
At the congress (IEA-2006) a special symposium is
dedicated to the health risks of computer use:
"Unravelling the causes of Upper Extremity Disorders
among computer users".

Another major factor is the mental state. It is
proven that personality, and stress are important factors
in developing ULD/CTD for PC users.

Simple cognitive loads are also important; these
increase significantly (co)contraction of muscles, as
Van Galen shows in [4]. So for both physical health
and mental workload it is important to avoid e.g.
memorising and selecting data from crowded screens.

To summarise, software ergonomics is important at
all design levels, among which:
▪ task allocation and task flow;
▪ information design;
▪ dialogue design;
▪ amount and kind of control actions needed.

References

[1] ErgoS, E. (Dutch) Mens Computer Interactie. Arbo-

themacahier nr.16, Sdu Uitgevers, Den Haag, The
Netherlands, 2005.

[2] Nielsen, J. Usability Engineering. Morgan Kaufmann,
San Francisco, 1994.

[3] Bias, R.G. The pluralistic usability walkthrough:
Coordinated empathies. In: Nielsen, J., and Mack, R.L.
(Eds.) Usability Inspection Methods. John Wiley &
Sons, New York, NY, 1994.

[4] Van Galen, G.P. and Müller, M. (Dutch, English
summary) Repetitive Strain Injury, Stress, Muscle
Tension and the Neuromotor Noise Concept. Tijdschrift
voor Ergonomie, nr.2 (1995) pp. 3-17, NVvE.

